Skyrmion

Als Skyrmion (nach Tony Skyrme) wird in der theoretischen Physik ein Modell topologisch stabiler Solitonen-Wirbel in Feldern bezeichnet. Diese Wirbel verhalten sich wie Teilchen bzw. Quasiteilchen endlicher Masse.[1]

Skyrmionen verwendete man als Modell ab 1958 bei Versuchen, die bis dahin rätselhafte Starke Wechselwirkung zu erklären. Ihr unterliegen insbesondere Protonen, Neutronen und Pionen. Tony Skyrme wollte die Starke Wechselwirkung damit erklären, dass Protonen und Neutronen Wirbel in Pionenfeldern wären.[2][3][4][5] Man nannte die stabilen Wirbel "Skyrmionen". Um 1965 wurde klar, dass Protonen, Neutronen und Pionen aus Quarks bestehen. Damit bedurfte man in der Kernphysik keiner Skyrmionen als Erklärungsmodell mehr.

Ab den 1980er Jahren übernahm man den Modellbegriff in der Festkörperphysik, und er wurde auch in der Teilchenphysik mit Arbeiten von Edward Witten und verschiedenen Bag-Modellen für Hadronen populär (siehe auch Kenneth A. Johnson). In der Festkörperphysik wurde er u. a. beim Quanten-Hall-Effekt in zweidimensionalen Elektronengasen diskutiert. Derzeit untersucht man Skyrmionen auch an Oberflächen und Grenzflächen magnetischer Systeme.[6][7]

Anfang 2009 konnte an der TU München von Sebastian Mühlbauer, Christian Pfleiderer, Peter Böni, dem Theoretiker Achim Rosch (Universität zu Köln) und anderen erstmals ein Skyrmionengitter in einem magnetischen Festkörper (Mangansilizium bei −245 °C und in einem Magnetfeld von 0,2 Tesla) direkt nachgewiesen werden.[8] Eine im September 2010 eingereichte und im Juli 2011 veröffentlichte Publikation einer Forschergruppe der Universitäten Kiel und Hamburg sowie des Forschungszentrums Jülich beschreibt den ersten Nachweis von Skyrmionen ohne externes Magnetfeld.[9][10] 2013 gelang es an der Universität Hamburg, Skyrmionen gezielt auf Oberflächen zu erzeugen und zu löschen.[11] Da man stabile Skyrmionen auch bei Zimmertemperatur nachwies, erscheint ihr Einsatz in schnellen Informationsspeichern künftig möglich. Hierbei unterscheidet man in Kristallen Néel- und Bloch-Skyrmionen sowie Anti-Skyrmionen als Mischung aus Néel- und Bloch-Zuständen.[12] 2019 gelang die dreidimensionale Auflösung der magnetischen Struktur von Skyrmionen, wobei die rund 100 nm großen Skyrmionen in Vielfachschichten von Ta/CoFeB/MgO untersucht wurden.[13][14] Dabei stellte sich die Dipol-Dipol-Wechselwirkung zusammen mit der Wechselwirkung mit dem äußeren magnetischen Feld als besonders wichtig für die Stabilisierung heraus.[15]

  1. Spektrum der Wissenschaft April 2009, S. 11, Feldknoten als Teilchen
  2. Tony Skyrme: A non linear theory of strong interactions. In: Proc.Roy.Soc. A 247. Jahrgang, 1958, S. 260, doi:10.1098/rspa.1958.0183. Vorlage:Cite journal: Der Parameter language wurde bei wahrscheinlich fremdsprachiger Quelle nicht angegeben.
  3. Tony Skyrme: A unified model of K and Pi-Mesons, Proc.Roy.Soc. A 252, 1959, S. 236
  4. Tony Skyrme: A nonlinear field theory, Proc.Royal Society A 260, 1961, S. 127–138
  5. Tony Skyrme: Particle states in a quantized meson field, Proc.Roy.Soc. A 262, 1961, S. 237
  6. Kolloquiumsankündigung an der Universität Regensburg, "PDF" (Memento vom 14. Oktober 2013 im Internet Archive).
  7. Christian Pfleiderer: Magnetismus mit Drehsinn. Pro Physik, November 2010, abgerufen am 10. April 2024.
  8. TU München: Magnetische Wirbelfäden in der Elektronensuppe
  9. Deutsche Forscher entdecken neue "Skyrmionen", Meldung vom 31. Juli 2011 auf heise.de; abgerufen am 31. Juli 2011
  10. Strom bewegt Skyrmionen - Kopplung zwischen magnetischen Wirbeln und sehr schwachem Strom könnte erheblich schnellere und effizientere Datenspeicherung ermöglichen. In: TU-München. pro-physik.de, 20. Dezember 2010, abgerufen am 10. April 2024.
  11. Magnetische Nano-Knoten als Datenspeicher - Erster Schritt gelungen: Forscher erzeugen und löschen Skyrmionen auf einer Oberfläche. Original aus Science, 2013, abgerufen am 9. August 2013 (10.1126/science.1240573).
  12. Anti-Magnetwirbel in exotischer Legierung. Original aus Nature, 2017, abgerufen am 26. Dezember 2017 (10.1038/nature23466).
  13. Wenjing Li, Gisela Schütz u.a.: Anatomy of Skyrmionic Textures in Magnetic Multilayers, Advanced Materials, Band 31, 2019, Heft 14
  14. Gisela Schütz, Joachim Gräfe, Linda Behringer: 3D-Struktur von Skyrmionen wird erstmals sichtbar, Max-Planck-Institut für Intelligente Systeme, 1. März 2019
  15. T. Schulz et al.: Gitter aus magnetischen Wirbeln kann Bits speichern - Drastisch reduzierter Energieverbrauch von Computern durch Nutzung von Skyrmionen. In: TU-München. Pro Physik, 12. Februar 2021, abgerufen am 10. April 2024.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne